4.7 Article

Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2017.2727223

关键词

Barrier Lyapunov function (BLF); error transformation; Nussbaum gain technique; prescribed tracking performance; robust adaptive neural control

资金

  1. Graduate Scientific Research and Innovation Foundation of Chongqing [CYB17048]
  2. Technology Transformation Program of Chongqing Higher Education University [KJZH17102]

向作者/读者索取更多资源

This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and L-1 smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as t -> infinity; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据