4.6 Article

Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications

期刊

ELECTROCHIMICA ACTA
卷 235, 期 -, 页码 623-631

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.03.102

关键词

Molybdenum disulphide; conducting polymer; nanocomposite; supercapacitor; charge/discharge

向作者/读者索取更多资源

An innovative nanocomposite electrode was chemically synthesized using molybdenum disulphide (MoS2)-polyethylenedioxythiophene (PEDOT) to understand the charge mechanism in a symmetric supercapacitor. The MoS2-PEDOT nanocomposite was produced at various ratios of MoS2 to ethylenedioxythiophene (EDOT) in an aqueous medium of polyanions polystyrene sulfonate (PSS) and cetyltrimethylammonium bromide (CTAB) at controlled conditions. The morphology, crystallinity, and optical properties of MoS2-PEDOT nanocomposite materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, particle size analyzer, Raman spectroscopy, X-ray-diffraction, and transmission electron microscopy (TEM) techniques, respectively. The electrochemical properties of the supercapacitor were investigated using cyclic voltammetry, charging-discharging at constant current and electrochemical impedance spectroscopy (EIS) techniques. The specific capacitance, power and energy densities of the supercapacitor were estimated using cyclic voltammetry (CV),charging-discharging, Nyquist and Bode plots. The specific capacitance was estimated to be 361 Farad/gram (F/g) for the 1:2 weight ratio of MoS2 to the EDOT monomer in the MoS2-PEDOT nanocomposite based electrodes. Nevertheless, this study provides a fundamental aspect of synthesis of nanocomposite material for optimum attainment supercapacitive properties based on the MoS2- PEDOT nanocomposite electrode for practical energy storage applications. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据