4.7 Article

Systematic study of the stochastic gravitational-wave background due to stellar core collapse

期刊

PHYSICAL REVIEW D
卷 95, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.95.063015

关键词

-

资金

  1. DOE at the University of Minnesota [DE-SC0011842]
  2. NSF at the University of Minnesota [PHY-1204944]
  3. French state funds [ANR-10-LABX-63, ANR-11-IDEX-0004-02]
  4. Division Of Physics
  5. Direct For Mathematical & Physical Scien [1505870] Funding Source: National Science Foundation

向作者/读者索取更多资源

Stellar core collapse events are expected to produce gravitational waves via several mechanisms, most of which are not yet fully understood due to the current limitations in the numerical simulations of these events. In this paper, we begin with an empirical functional form that fits the gravitational-wave spectra from existing simulations of stellar core collapse and integrate over all collapse events in the Universe to estimate the resulting stochastic gravitational-wave background. We then use a Gaussian functional form to separately fit and model a low-frequency peak in the core-collapse strain spectra, which likely occurs due to prompt convection. We systematically study the parameter space of both models, as well as the combined case, and investigate their detectability by upcoming gravitational-wave detectors, such as Advanced LIGO and the Einstein Telescope. Assuming realistic formation rates for progenitors of core-collapse supernovae, our results indicate that both models are 2-4 orders of magnitude below the expected sensitivity of Advanced LIGO, and 1-2 orders of magnitude below that of the Einstein Telescope.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据