4.7 Article

Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation

期刊

ALEXANDRIA ENGINEERING JOURNAL
卷 56, 期 1, 页码 55-62

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aej.2016.08.035

关键词

Nanofluid; Natural convection; Slip boundary conditions; Stretching cylinder; Thermal radiation; Viscous dissipation

向作者/读者索取更多资源

The purpose of the present work is to examine the collective influence of thermal radiation and convection flow of Cu-water nanofluid due to a stretching cylinder in a porous medium along with viscous dissipation and slip boundary conditions. The governing non-linear ODEs and auxiliary boundary conditions those obtained by applying assisting similarity transformations have been handled numerically with shooting scheme through Runge-Kutta-integration procedure of fourth-fifth order. The non-dimensional velocity and temperature distribution are designed and also skin friction coefficient as well as heat transfer rate are tabulated for various values of relatable parameters. The results explain that Nusselt number depreciates with boost in radiation parameter, thermal slip parameter and Eckert number. Moreover, it is accelerated with increase in velocity slip parameter and natural convection parameter. The results are distinguished via published ones and excellent accord has been detected. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据