4.6 Article

A delay-aware cyber-physical architecture for wide-area control of power systems

期刊

CONTROL ENGINEERING PRACTICE
卷 60, 期 -, 页码 171-182

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2016.12.012

关键词

Power systems; Network control systems; Wide-area control; Delay-aware control

资金

  1. NSF via the CPS initiative [ECCS-1135815]
  2. NSF [ECS 1054394]

向作者/读者索取更多资源

In this paper we address the problem of wide-area control of power systems using Synchrophasor measurements in the presence of network delays. We propose a novel cyber-physical architecture that uses an arbitrated network control systems approach for mitigating the destabilizing effects of delays in power systems. The approach consists of: (1) utilization of Synchrophasor measurements from distributed measurements across different buses in the power network, (2) estimation of delays that control messages experience, (3) a delay aware control design that explicitly accommodates the delays and judiciously utilizes estimated system states when needed, and (4) a switching control strategy that aborts the computation of control signals when delays exceed a certain threshold to improve resource utilization. While the control gains are determined using a centralized power system model and state feedback, it is shown that the delay-aware aspects of the proposed architecture allow both distributed measurements and distributed implementation of the control law. The results are illustrated using a 50-bus, 14-generator, 4-area power system model. The results clearly demonstrate that the proposed controller recovers the ideal system performance (such as deviations in frequency <3 mHz) even in the presence of large intra-area and inter-area delays with a small amount of additional control effort. Using the proposed overrun strategy, the results also confirm that about 30% drops can be accommodated with the proposed arbitrated network control systems approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据