4.6 Article

Simulation of microwave thin layer drying process by a new theoretical model

期刊

CHEMICAL ENGINEERING SCIENCE
卷 162, 期 -, 页码 69-76

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2016.12.040

关键词

Simulation; Microwave; Drying; Thin layer

资金

  1. Procter Gamble

向作者/读者索取更多资源

Various methodologies have been proposed in literature on modeling microwave drying process. However, in these methodologies moisture diffusion is normally considered in the presence of intensive microwave energy. In the present study, a new theoretical model was developed to simulate microwave drying of thin layer particulate solids, based on the consideration that moisture diffusion along material layer could be ignored due to rapid evaporation under intensive microwave energy. The model was solved numerically by using finite difference method and validated against experimental data. Results indicated good agreement between the model and experimental data, thus providing confidence in the modeling approach. For the system investigated in this study, it was demonstrated that an 80% reduction in drying time was achieved with approximately fivefold increase in microwave power (109-543 W). Furthermore, it was also demonstrated that the drying rate was the maximum corresponding to the optimal layer thickness in microwave thin layer drying process. Qualitative analysis explained the optimal thickness phenomenon using principles of heat and mass transfer. Finally, the validated model was used to predict moisture and temperature distributions along the entire material layer. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据