4.3 Article

Influence of Diffusion Coefficient of Cobalt Redox Mediator Using Triphenylamine Dyes with Various Number of Anchoring Groups: Photovoltaic Performance of DSSCs

期刊

ELECTROCATALYSIS
卷 8, 期 5, 页码 414-421

出版社

SPRINGER
DOI: 10.1007/s12678-017-0388-4

关键词

Diffusion coefficient; Dye-sensitized solar cell; Redox shuttle; Electrolyte

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20163030013800]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [20163030013800] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The development of electrolytes containing a novel redox shuttle is essential for achieving highly efficient and stable dye-sensitized solar cells (DSSCs). Here, the effect of the diffusion coefficient of redox shuttles in the electrolyte on the photovoltaic performance of DSSCs using triphenylamine dyes by a different number of anchoring groups was investigated. Two different types of cobalt (II)/(III) polypyridine complexes, namely, [Co(bpy)(3)](2+/3+) and [Co(dtb)(3)](2+/3+) (where bpy = (2,2'-bipyridine) and dtb = (4,4'-di-tert-butyl-2,2'-bipyridine)), are applied to the hole transporting redox shuttles in DSSCs. Their diffusion coefficients are estimated by linear sweep voltammetry (LSV) at various scan rates. The diffusion coefficient of [Co(bpy)(3)](2+) and [Co(dtb)(3)](2+) in the prepared electrolyte are 1.91 x 10(-7) and 2.27 x 10(-8) cm(2)/s, respectively. The high diffusion coefficient of [Co(bpy)(3)](2+) leads to a high ionic conductivity of the electrolyte that is nearly two times higher than the [Co(dtb)(3)](2+/3+)-based electrolyte. This [Co(bpy)(3)](2+/3+)-based electrolyte leads to an increase in the DSSCs photovoltaic performance with an increase in electronic coupling with the organic dye and TiO2. This is due to the photovoltaic performance is not limited by the mass-transportation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据