4.4 Article

Bioengineered Renal Cell Therapy Device for Clinical Translation

期刊

ASAIO JOURNAL
卷 63, 期 3, 页码 305-315

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MAT.0000000000000485

关键词

cell therapy; renal cell; progenitor; extracorporeal; bioreactor; acute kidney injury; acute renal failure; cell-based device; tissue engineering; rapid prototyping

资金

  1. NIH [5 U42 RR006042]

向作者/读者索取更多资源

The bioartificial renal epithelial cell system (BRECS) is a cell-based device to treat acute kidney injury through renal cell therapy from an extracorporeal circuit. To enable widespread implementation of cell therapy, the BRECS was designed to be cryopreserved as a complete device, cryostored, cryoshipped to an end-use site, thawed as a complete device, and employed in a therapeutic extracorporeal hemofiltration circuit. This strategy overcomes storage and distribution issues that have been previous barriers to cell therapy. Previous BRECS housings produced by computer numerical control (CNC) machining, a slow process taking hours to produce one bioreactor, was also prohibitively expensive (>$600/CNC-BRECS); major obstacles to mass production. The goal of this study was to produce a BRECS to be mass produced by injection-molded BRECS (IM-BRECS), decreasing cost (<$20/unit), and improving manufacturing speed (hundreds of units/h), while maintaining the same cell therapy function as the previous CNC-BRECS, first evaluated through prototypes produced by stereolithography BRECS (SLA-BRECS). The finalized IM-BRECS design had a significantly lower fill volume (10 ml), mass (49 g), and footprint (8.5 cm x 8.5 cm x 1.5 cm), and was demonstrated to outperform the previous BRECS designs with respect to heat transfer, significantly improving control of cooling during cryopreservation and reducing thaw times during warming. During in vitro culture, IM-BRECS performed similarly to previous CNC-BRECS with respect to cell metabolic activity (lactate production, oxygen consumption, and glutathione metabolism) and amount of cells supported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据