4.6 Review

The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids

期刊

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.cocis.2017.03.005

关键词

Cellulose nanocrystals; Non-ionic polymer adsorption; Hydrogen bonding; Silica; Polyethylene glycol

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Cabot Corporation
  3. Biointerfaces Institute at McMaster University
  4. Brockhouse Institute for Materials Research at McMaster University

向作者/读者索取更多资源

A piqued interest in nanocellulose has recently arisen due to the growing need to use sustainable and renewable materials in place of those that are derived from petrochemical resources. Although current commercial uses of nanocellulose remain limited, research over the past two decades demonstrates numerous applications including reinforcing agents in polymer and cement composites, coatings, foams, gels, tissue scaffolds, and rheological modifiers, amongst others. Because of the hydrophilic nature of nanocellulose many of the potential uses will likely be in water-based formulations or employ water-based processing methods. Thus understanding the interactions between nanocellulose and water-soluble polymers is critical. Although polyelectrolyte adsorption to cellulose is well understood, adsorption of non-ionic polymers is less clear, with hydrogen bonding often cited as a governing factor. Recent work suggests that in fact hydrogen bonding does not play a significant role in nanocellulose systems, and that non-ionic polymer adsorption is largely entropically driven. Herein we review current literature that investigates non-ionic polymer adsorption to cellulose nanocrystals (CNCs) and draw upon previous papermaking research to better understand the mechanisms involved. Additionally we analyze recent work that compares the adsorption of polyethylene glycol (PEG) to CNCs and fumed silica that provides further insight into this phenomenon. Our findings, along with current literature, suggest that hydrogen bonding does not significantly impact polymer adsorption in aqueous media despite reports to the contrary. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据