4.7 Article

Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 138, 期 -, 页码 398-409

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2017.02.037

关键词

3D printing; Calcium aluminate cement; Ordinary Portland cement; Lithium carbonate; Compressive strength; Porosity; 3D profilometer; SEM

资金

  1. Swinburne University of Technology-Research Centre for Sustainable Technologies

向作者/读者索取更多资源

Additive manufacturing is a common technique used to produce 3D printed structures. These techniques have been used as precise application geometry in different fields such as architecture and medicine, and the food, mechanics and chemical industries. However, in most cases only a limited amount of powder has been used to fabricate scaffold (structure). In this study, a unique mix of cements (calcium aluminate cement passed through a 150 gm sieve and ordinary Portland cement) was developed for Z-Corporation's three-dimensional printing (3DP) process. This cement mix was blended and the resulting composite powders were printed with a water-based binder using a Z-Corporation 3D printer. Moreover, some samples were added lithium carbonate to reduce the setting time for the cement mixture. The aims of the study were to firstly, find the proper cementitious powder close to the targeted powder (Z-powder); and secondly, evaluate the mechanical properties of this material. Cubic specimens of two different batches With varying saturation levels were cast and cured in various scenarios to enhance the best mechanical properties. The samples were characterised by porosity analyses, compression tests, Olympus BX61 Microscope imaging, 3D profiling Veeco (Dektak) and the Scanning Electronic Microscope (SEM). The maximum compressive strength of the cubic specimens for cementitious 3DP was 8.26 MPa at the saturation level of 170% for both the shell and core. The minimum porosity obtained was 49.28% at the saturation level of 170% and 340% for the shell and the core, respectively. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据