4.7 Article

Improving dielectric properties of SaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles

期刊

APPLIED SURFACE SCIENCE
卷 403, 期 -, 页码 71-79

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.01.121

关键词

Core-shell structure; Nanocomposites; Poly(vinylidene fluoride); Dielectric properties

资金

  1. National Natural Science Foundation of China [51273013]
  2. Major Project for Polymer Chemistry and Physics Subject Construction from Beijing Municipal Education Commission (BMEC)

向作者/读者索取更多资源

Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO3 (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMAI/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/13VDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially those with low dielectric loss and high dielectric constant. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据