4.6 Article

Mn2C sheet as an electrode material for lithium-ion battery: A first-principles prediction

期刊

ELECTROCHIMICA ACTA
卷 235, 期 -, 页码 167-174

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.03.111

关键词

Mn2C sheet; MXene; Electrode material; Density functional theory

资金

  1. National Natural Science Foundation of China [11504044]
  2. Fundamental Research Funds for the Central Universities [ZYGX2015KYQD012]
  3. New Academic Researcher Award [Y03111023901014002]

向作者/读者索取更多资源

A search for high-efficiency electrode materials is crucial for the application of Li-ion batteries (LIBs). Using density functional theory (DFT), we assess the Mn2C sheet, a new MXene, as a suitable electrode material. Our studies show that Li atoms can bind strongly to the Mn2C sheet, with low adsorption energy of -1.93 eV. A pristine Mn2C sheet exhibits metallic characteristic, offering an intrinsic advantage for the transportation of electrons in material. A very low energy barrier of 0.05 eV is predicted, showing that Li ion can easily and freely migrate on the Mn2C sheet. In addition, with the increase of Li content, adsorption energy varies minimally within a range of energy that spans only 0.27 eV, showing that lithiation to a high content is feasible. Furthermore, we found that, because of the bilayer adsorptions on both sides of the Mn2C sheet, the theoretical capacity of the Mn2C sheet is 879 mAhg(-1), which is greater than that of most two-dimentional (2D) electrode materials. All these results reveal a new promising MXene material for LIBs. We also studied the effects of oxidation and fluorination on the electrochemical properties of the Mn2C sheet and found that oxidation and fluorination will fade the electrochemical properties of the Mn2C sheet in general. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据