4.7 Article

Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow

期刊

ATMOSPHERIC ENVIRONMENT
卷 157, 期 -, 页码 111-124

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2017.03.024

关键词

Simulated warming; Nitrogen addition; Greenhouse gas; Freeze-thaw cycles

资金

  1. National Basic Research Program of China [2013CBA01807]
  2. National Natural Science Foundation of China [41271224, 91547203]
  3. National Science and Technology Support Program of China [2014BAC05B01]

向作者/读者索取更多资源

The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 degrees C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m(-2)) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据