4.1 Article

Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed (Amaranthus retroflexus L.) from China

期刊

CHILEAN JOURNAL OF AGRICULTURAL RESEARCH
卷 77, 期 4, 页码 311-317

出版社

INST INVESTIGACIONES AGROPECUARIAS
DOI: 10.4067/S0718-58392017000400311

关键词

Acetolactate synthase; gene mutation; protoporphyrinogen oxidase; multiple resistance

资金

  1. Special Fund for Agroscientific Research in the Public Interest [201303031]

向作者/读者索取更多资源

Redroot pigweed (Amaranthus retroflexus L.) is a troublesome weed infesting soybean (Glycine max [L.] Merr.) productions in China. One redroot pigweed population, collected from Heilongjiang (HLJ) Province, China, was suspected to be resistant to thifensulfuron-methyl and fomesafen. The other one redroot pigweed population, collected from Shandong (SD) Province, was susceptible. The study aimed to characterize the level of thifensulfuron-methyl and fomesafen resistance using HLJ population and identify the potential resistance mechanisms to thifensulfuron-methyl. The sensitivity to other herbicides with and without the same target site was also evaluated. Acetolactate synthase (ALS) gene sequencing revealed that Trp(574)Leu or Ala(205)Val amino acid substitution were present in the HLJ population. Whole-plant herbicide bioassays showed that, compared with SD population, HLJ population displayed high level of resistance to thifensulfuron-methyl and moderate resistance to fomesafen. The 50% growth reduction (GR(50)) value of thifensulfuron-methyl with malathion pretreatment was reduced by 23%, suggesting that both target-site resistance and non-target-site resistance mechanisms were present in thifensulfuron-methyl resistance of redroot pigweed. Cross-resistant patterns showed that the HLJ population evolved resistance to pyrithiobac-sodium, pyroxsulam, imazethapyr and fluoroglycofen, but susceptible to bentazone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据