4.5 Article

Glucose-Modified Silicon Nanoparticles for Cellular Imaging

期刊

CHEMPLUSCHEM
卷 82, 期 4, 页码 660-667

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cplu.201700054

关键词

bioimaging; carbohydrates; glyco-nanoparticles; luminescence; silicon nanoparticles

资金

  1. Helmholtz Virtual Institute Functional nanomaterials for multimodality cancer imaging [VH-VI-421]

向作者/读者索取更多资源

Luminescent silicon nanoparticles have recently attracted attention due to their remarkable stability, covalent functionalisation and tunable photoemission properties. Owing to their biocompatibility, low toxicity, and the small particle size that can be achieved by different synthetic approaches, these nanomaterials are candidates as cellular probes in the field of bioimaging, and potentially for in vivo applications. Tailoring the surface of the particles with active biomolecules such as sugar moieties can be an interesting strategy to increase the kinetics of internalisation or to vary the localisation of nanosystems in living cells. In this study, we synthesised and modified ultrasmall silicon nanoparticles with glucose covalently linked on their surface. Moreover, by varying the ratio between the amount of silicon nanoparticles and the saccharide groups, the amount of glucose, as a capping moiety, can be well controlled. FTIR spectroscopy, NMR spectroscopy, zeta potential measurements and anisotropy decay analysis confirmed the covalent binding of glucose to the nanoparticles. The photophysical behaviour of the surface-functionalised silicon quantum dots was not significantly different to that of the unmodified nanoparticles. In vitro studies demonstrated faster internalisation of the glucose-functionalised nanoparticles into HeLa cells. Different localisation and uptake kinetics of the glucose-modified particles compared to the unmodified particles are discussed in order to reveal the role played by the sugar molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据