4.6 Article

Construction of a protein-engineered variant of D-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 77, 期 -, 页码 112-115

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2017.03.005

关键词

Fructose dehydrogenase; Direct electron transfer; Flavohemoprotein; Orientation; Protein engineering

资金

  1. Research Fellowships of Japan Society for the Promotion of Science for Young Scientists [201708760]

向作者/读者索取更多资源

D-Fructose dehydrogenase (FDH), a heterotrimeric membrane-bound enzyme, exhibits strong activity in direct electron transfer- (DET-) type bioelectrocatalysis. We constructed a variant (Delta 1cFDH) that lacks 143 amino acid residues involving one heme c moiety (called heme 1c) on the N-terminus of subunit II, and characterized the bioelectrocatalytic properties of Delta 1cFDH using cyclic voltammetry. A clear DET-type catalytic oxidation wave of D-fructose was observed at the Delta 1cFDH-adsorbed Au electrodes. The result clearly indicates that the electrons accepted at the Flavin adenine dinucleotide catalytic center in subunit I are transferred to electrodes via two of the three heme c moieties in subunit II without going through heme lc. In addition, the limiting current density of A1cFDH was one and a half times larger than that of the native FDH in DET-type bioelectrocatalysis. The downsizing protein engineering causes an increase in the surface concentration of the electrochemically effective enzymes and an improvement in the heterogeneous electron transfer kinetics. (C) 2017 Elsevier By. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据