4.7 Article

Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12-2T

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 101, 期 7, 页码 2967-2978

出版社

SPRINGER
DOI: 10.1007/s00253-017-8114-y

关键词

Exopolysaccharide; Mini-Tn5; Cellmotility; Antioxidant capacity; Mesorhizobium alhagi

资金

  1. National Key Research & Development Program [2016YFD0200308]
  2. National Natural Science Foundation of China [41671261, 31370142, 31270012]

向作者/读者索取更多资源

Mesorhizobium alhagi, a legume-symbiont soil bacterium that forms nodules with the desert plant Alhagi sparsifolia, can produce large amounts of exopolysaccharide (EPS) using mannitol as carbon source. However, the role of EPS in M. alhagi CCNWXJ12-2(T), an EPS-producing rhizobium with high salt resistance, remains uncharacterized. Here, we studied the role of EPS in M. alhagi CCNWXJ12-2(T) using EPS-deficient mutants constructed by transposon mutagenesis. The insertion sites of six EPS-deficient mutants were analyzed using single primer PCR, and two putative gene clusters were found to be involved in EPS synthesis. EPS was extracted and quantified, and EPS production in the EPS-deficient mutants was decreased by approximately 25 times compared with the wild-type strain. Phenotypic analysis revealed reduced salt resistance, antioxidant capacity, and cell motility of the mutants compared with the wild-type strain. In conclusion, our results indicate that EPS can influence cellular Na+ content and antioxidant enzyme activity, as well as play an important role in the stress adaption and cell motility of M. alhagi CCNWXJ12-2(T).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据