4.7 Article

Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells

期刊

CELL AND BIOSCIENCE
卷 7, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13578-017-0197-8

关键词

Hypoxia; Tyrosine kinase inhibitors; Drug resistance; 3D cell culture; Renal cell carcinoma; Papillary; Clear-cell

资金

  1. Foundation for the Polish Science (FNP) [TEAM/2010-6/8]
  2. National Centre for Research and Development in Poland (NCBiR) [LIDER/031/625/L-4/NCBR/2013]
  3. National Science Centre PRELUDIUM 9 Grant [UMO-2015/17/N/NZ5/00691]
  4. Ministry of Science and Higher Education statutory Funding [MNiSW 5099/E-592/M/2015]

向作者/读者索取更多资源

Background: The aim of this study is to determine the effect of hypoxia on axitinib and sorafenib-treated renal cell carcinoma (RCC) cells. Hypoxia is a crucial factor influencing transcription process via protein modulation, which was shown i.e. in pancreatic cancer. Until now, hypoxia has been defined as associated with poorer outcome and inducing chemotherapy resistance in solid tumors. The unique phenomenon of pseudo-hypoxia connected with vhl mutation was observed in clear-cell, but not in papillary RCC, and the treatment of this subtype of cancer is still challenging. Despite the introduction of new antiangiogenic targeted therapies (inter alia tyrosine kinase inhibitors, TKIs), patients still develop both primary and acquired resistance. Overcoming resistance to TKIs, also in papillary RCC, may be possible by finding significantly modified protein expression. To do this, hypoxic 3D in vitro models must be developed to mimic both molecular pathways typical for low oxygen tension and cell-cell dynamics in tumor-like spatial structures. Results: Clear-cell and papillary renal cell carcinoma (cc and pRCC) cell lines were used in the study to determine the impact of hypoxia on primary drug resistance phenomenon previously observed in papillary, but not in ccRCC. Resistance was confirmed in monolayer culture and in 3D models in soft agar and suspension culture. Human papillary kidney cancer stem-like cells (HKCSCs) cultured in hypoxia developed resistance to sorafenib, while when cultured in normoxia resistance to axitinib has developed. Flow cytometry revealed that hypoxia decreased proliferation rates in all investigated RCC cells. In HKCSCs, there was an increase of quiescent cells (Ki67-)and percentage of cells arrested in S phase. It also appeared that map2k1 and eif4b protein expression is altered in papillary RCC resistant to tested drugs at different oxygen tensions. Also, HKCSCs did not express vegfr-1,braf nor c-kit, TKIs target receptors, which were present in ccRCC cells sensitive to TKI treatment. Conclusions: The results confirm that low oxygen tension affects RCC cells. Hypoxia facilitates induction of sorafenib resistance in pRCC and induces map2k1 overexpression, while normoxic axitinib-resistant cells up-regulated eif4b. Further studies may determine if map2k1 or eif4b proteins play a role in pRCC resistance to TKIs. It is also of interest to establish if other than vegfr-1, braf, c-kit receptors can serve as potential molecular targets for more effective anti-RCC strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据