4.7 Article

Detecting impact traces on a composite pressure vessel with aluminum-coating optical fiber using a phase-modulated BOCDA sensor

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 142, 期 -, 页码 264-274

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2017.02.019

关键词

Structure composites; Optical fiber; Laminate; Impact behavior; Residual stress; Deformation

资金

  1. National Research Council of Science and Technology (NST) of Ministry of Science, ICT and Future Planning under the program of civil and military fusion technology [CMP-13-01-KRISS]

向作者/读者索取更多资源

Impact traces on a composite pressure vessel were detected by measuring residual strain in aluminum (Al)-coating optical fiber for the first time. The residual strain was obtained by a Brillouin optical correlation domain analysis (BOCDA) sensor system, where a continuous optical signal was simultaneously phase-modulated to choose the sensing position, and single-side-band modulated to find the Brillouin frequency. This sensor system successfully measured the Brillouin frequency, which can be converted to the strain, along a 500 m long optical fiber, with distance resolution of less than 1.5 cm. The cantilever beam test using a bonded optical fiber presented the strain conversion coefficient, which was determined by the comparison between the measured Brillouin frequency and the strain of an electric strain gauge. Al-coating optical fiber was attached around the surface of a composite pressure vessel, and consecutive impacts at six separate positions were applied using hemisphere and wedge impactors with energies of 10, 20, and 40 J. The measured Brillouin frequencies were the unchanged intrinsic frequency along the whole fiber length, except for the six peak positions, which exactly coincided with the impact positions. The fine measurement at these peak positions showed the frequency peaks to be composed of two split peaks, which were compared with photographs taken while the impacted surfaces were deformed. This confirmed that a dent temporarily formed at an impact position caused the optical fiber to bend twice, and the strain remained at two adjacent positions. Hydraulic pressure test of the composite pressure vessel after the impacts showed that this measurement system could detect small impact traces that do not cause critical structural degradation, as well as large impact damages. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据