4.6 Article

Spin relaxation in corrugated graphene

期刊

PHYSICAL REVIEW B
卷 95, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.195402

关键词

-

资金

  1. MINECO (Spain) [FIS2014-57432-P]
  2. ERC Advanced Grant NOVGRAPHENE [290846]
  3. European Commission under the Graphene Flagship [CNECTICT-604391]
  4. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0012190]

向作者/读者索取更多资源

In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax the electron spin, intrinsically protected by mirror symmetry. We calculate the relaxation times in different scenarios, accounting for all the possible spin-phonon couplings allowed by the hexagonal symmetry of the lattice. Scattering by flexural phonons imposes the ultimate bound to the spin lifetimes, in the ballpark of hundreds of nanoseconds at room temperature. This estimate and the behavior as a function of the carrier concentration are substantially altered by the presence of tensions or pinning with the substrate. Static ripples also influence the spin transport in the diffusive regime, dominated by motional narrowing. We find that the D'yakonov-Perel' mechanism saturates when the mean free path is comparable to the correlation length of the height profile. In this regime, the spin-relaxation times are exclusively determined by the geometry of the corrugations. Simple models for typical corrugations lead to lifetimes of the order of tens of microseconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据