4.6 Article

Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations

期刊

PHYSICAL REVIEW A
卷 95, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.95.012322

关键词

-

资金

  1. NASA Advanced Exploration Systems program
  2. NASA Ames Research Center
  3. AFRL Information Directorate [F4HBKC4162G001]
  4. Director of National Intelligence (ODNI)
  5. Intelligence Advanced Research Projects Activity (IARPA), via IAA [145483]

向作者/读者索取更多资源

We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the spiky barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据