4.5 Article

Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets

期刊

EUROPEAN JOURNAL OF NUTRITION
卷 55, 期 8, 页码 2423-2430

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00394-015-1049-0

关键词

Piglet; Folate; Betaine; Protein synthesis; 1-Carbon metabolism

资金

  1. Canadian Institutes of Health Research [201103RNL]
  2. Research Development Corporation of Newfoundland and Labrador [5404-1046-104]

向作者/读者索取更多资源

Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1-C-13]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P < 0.05). These data demonstrate an equal capacity for betaine and folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据