4.7 Article

3D printing scaffold coupled with low level light therapy for neural tissue regeneration

期刊

BIOFABRICATION
卷 9, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/aa6999

关键词

3D printing; neural tissue engineering; laser stimulation; low-level light therapy; neuronal differentiation

资金

  1. March of Dimes Foundation's Gene Discovery and Translational Research Grant

向作者/读者索取更多资源

3D printing has shown promise for neural regeneration by providing customized nerve scaffolds to structurally support and bridge the defect gap as well as deliver cells or various bioactive substances. Low-level light therapy (LLLT) exhibits positive effects on rehabiliation of degenerative nerves and neural disorders. With this in mind, we postulate that 3D printed neural scaffold coupling with LLLT will generate a new strategy to repair neural degeneration. To achieve this goal, we applied red laser light to stimualte neural stem cells on 3D printed scaffolds and investigated the subsequent cell response with respect to cell proliferation and differentiation. Here we show that cell prolifeartion rate and intracellular reactive oxgen species synthesis were significantly increased after 15 s laser stimulation follwed by 1 d culture. Over culturing time of 14 d in vitro, the laser stimulation promoted neuronal differentiation of neural stem cells, while the glial differentiation was suppressed based on results of both immunocytochemistry studies and real-time quantitative reverse transcription polymerase chain reaction testing. These findings suggest that integration of 3D printing and LLLT might provide a powerful methodology for neural tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据