4.7 Article

Multi-Imaging Method to Assay the Contractile Mechanical Output of Micropatterned Human iPSC-Derived Cardiac Myocytes

期刊

CIRCULATION RESEARCH
卷 120, 期 10, 页码 1572-+

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.116.310363

关键词

cardiac myocyte; contractility; sarcomere length; single cell; stem cell

资金

  1. American Heart Association [14POST18360018]
  2. Canadian Institutes of Health Research [129844]
  3. National Science Foundation [MIKS-1136790]
  4. National Institutes of Health [R01-EB006745, R21-HL130993-01]
  5. Stanford CVI
  6. BioX
  7. ChEM-H

向作者/读者索取更多资源

Rationale: During each beat, cardiac myocytes (CMs) generate the mechanical output necessary for heart function through contractile mechanisms that involve shortening of sarcomeres along myofibrils. Human-induced pluripotent stem cells (hiPSCs) can be differentiated into CMs (hiPSC-CMs) that model cardiac contractile mechanical output more robustly when micropatterned into physiological shapes. Quantifying the mechanical output of these cells enables us to assay cardiac activity in a dish. Objective: We sought to develop a computational platform that integrates analytic approaches to quantify the mechanical output of single micropatterned hiPSC-CMs from microscopy videos. Methods and Results: We micropatterned single hiPSC-CMs on deformable polyacrylamide substrates containing fluorescent microbeads. We acquired videos of single beating cells, of microbead displacement during contractions, and of fluorescently labeled myofibrils. These videos were independently analyzed to obtain parameters that capture the mechanical output of the imaged single cells. We also developed novel methods to quantify sarcomere length from videos of moving myofibrils and to analyze loss of synchronicity of beating in cells with contractile defects. We tested this computational platform by detecting variations in mechanical output induced by drugs and in cells expressing low levels of myosin-binding protein C. Conclusions: Our method can measure the cardiac function of single micropatterned hiPSC-CMs and determine contractile parameters that can be used to elucidate mechanisms that underlie variations in CM function. This platform will be amenable to future studies of the effects of mutations and drugs on cardiac function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据