4.8 Article

Highly efficient photocatalytic performances of SnO2-deposited ZnS nanorods based on interfacial charge transfer

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 205, 期 -, 页码 433-442

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2016.12.063

关键词

Charge separation; Decay time; Heterojunction; Photodegradation; Photostability

资金

  1. National Research Foundation of Korea [2015-051798]

向作者/读者索取更多资源

SnO2/ZnS nanocomposites of SnO2 quantum dots (QDs)-deposited ZnS nanorods having highly enhanced photocatalytic activity and photostability have been fabricated via a facile two-step hydrazine-assisted hydrothermal process without involving any surface treatments. The photocatalytic activity of SnO2/ZnS nanocomposites with a Sn-to-Zn molar ratio (R-Sn/Zn) of 0.1 is 3 times higher than that of pristine ZnS nanorods and 17 times higher than that of commercial ZnS. The incorporation of SnO2 QDs increases the photocatalytic efficiency of ZnS nanorods due to the following reasons: photogenerated charge carriers are readily separated owing to type II band configuration and direct contact at interfaces without having any linker molecules; active surface sites are increased to adsorb more dye molecules; the light absorption range is extended to the visible region, generating more charge carriers on the surfaces of heterojunction structures. The decay time, as well as the intensity, of the band-edge emission of SnO2/ZnS nanocomposites at 325 nm decreases progressively and rapidly with the increase of R-Sn/Zn, indicating that fast electron transfer takes place from photoexcited ZnS nanorods to SnO2 QDs. Thus, the higher photo catalytic degradation efficiencies of SnO2/ZnS nanocomposites are considered to result mainly from the increased separation rates of photogenerated charges. The photostability of SnO2/ZnS nanocomposites is also improved due to the protection and charge-separation effects of decorating SnO2 QDs. Our prepared SnO2/ZnS nanocomposites are suggested to have great potential for photodegradation nanocatalysts in the field of waste-water treatment. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据