4.8 Article

Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 56, 期 21, 页码 5867-5871

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201701477

关键词

cobalt; dry exfoliation; iron; layered double hydroxides; oxygen evolution; ultrathin nanosheets

资金

  1. National Natural Science Foundation of China [51402100, 21573066]
  2. Provincial Natural Science Foundation of Hunan [2016JJ1006, 2016TP1009]

向作者/读者索取更多资源

Layered double hydroxides (LDHs) with two-dimensional lamellar structures show excellent electrocatalytic properties. However, the catalytic activity of LDHs needs to be further improved as the large lateral size and thickness of the bulk material limit the number of exposed active sites. However, the development of efficient strategies to exfoliate bulk LDHs into stable monolayer LDH nanosheets with more exposed active sites is very challenging. On the other hand, the intrinsic activity of monolayer LDH nanosheets can be tuned by surface engineering. Herein, we have exfoliated bulk CoFe LDHs into ultrathin LDH nanosheets through Ar plasma etching, which also resulted in the formation of multiple vacancies (including O, Co, and Fe vacancies) in the ultrathin 2D nanosheets. Owing to their ultrathin 2D structure, the LDH nanosheets expose a greater number of active sites, and the multiple vacancies significantly improve the intrinsic activity in the oxygen evolution reaction (OER).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据