4.7 Article

Nonlinear thermal buckling of axially functionally graded micro and nanobeams

期刊

COMPOSITE STRUCTURES
卷 168, 期 -, 页码 428-439

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2017.02.048

关键词

Nonlinear buckling; Thermal buckling; Axially functionally graded; Eringen nonlocal theory; Modified couple stress

向作者/读者索取更多资源

In this study, the nonlinear thermal buckling of axially functionally graded (AFG) Euler-Bernoulli micro/nanobeams is analyzed. The Eringen's nonlocal elasticity theory is used to develop the governing equations of nanobeam and the modified couple stress theory is used to study the microbeam. The micro and nanobeams are made of pure metal, pure ceramic and axially functionally graded material which is the composition of metal and ceramic. Boundary conditions are considered as clamped (CC) and simply supported (SS). The generalized differential quadrature method (GDQM) is used along with the iteration technique to solve the nonlinear equations. The parametric studies are served to examine the effects of the small scale parameters, length to height ratio (L/h), nonlinear amplitude and AFG power index on the buckling temperature of the micro- and nanobeams. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据