4.6 Article

Emergent equilibrium in many-body optical bistability

期刊

PHYSICAL REVIEW A
卷 95, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.95.043826

关键词

-

资金

  1. ARL CDQI at JQI
  2. ARO MURI at JQI
  3. NSF QIS at JQI
  4. ARO at JQI
  5. NSF PFC at JQI
  6. AFOSR
  7. National Science Foundation [PHYS-1516421]
  8. AFOSR-MURI
  9. ONR
  10. Sloan Foundation
  11. Division Of Physics
  12. Direct For Mathematical & Physical Scien [1516337, GRANTS:13677684, 1415616, 1430094, GRANTS:13728061] Funding Source: National Science Foundation

向作者/读者索取更多资源

Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion-organized around the experimentally relevant limit of weak interactions-the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据