4.4 Article

Iron Binding Properties of Recombinant Class A Protein Disulfide Isomerase from Arabidopsis thaliana

期刊

BIOCHEMISTRY
卷 56, 期 15, 页码 2116-2125

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.6b01257

关键词

-

资金

  1. Program Strategie innovative e sostenibili per la filiera agroalimentare-FilAgro within Accordo Quadro Consiglio Nazionale delle Ricerche
  2. Regione Lombardia

向作者/读者索取更多资源

The protein disulfide isomerase (PDI) family comprises a wide set of enzymes mainly involved in thiol disulfide exchange reactions in the endoplasmic reticulum. Class A PDIs (PDI-A) constitute the smallest members of the family, consisting of a single thioredoxin (TRX) module without any additional domains. To date, their catalytic activity and cellular function are still poorly understood. To gain insight into the role of higher-plant class A PDIs, the biochemical properties of rAtPDI-A, the recombinant form of Arabidopsis thaliana PDI-A, have been investigated. As expressed, rAtPDI-A has only little oxidoreductase activity, but it appears to be capable of binding an iron sulfur (Fe-S) cluster, most likely a [2Fe-2S] center, at the interface between two protein monomers. A mutational survey of all cysteine residues of rAtPDI-A indicates that only the second and third cysteines of the CXXXCKHC stretch, containing the putative catalytic site CKHC, are primarily involved in cluster coordination. A key role is also played by the lysine residue. Its substitution with glycine, which restores the canonical PDI active site CGHC, does not influence the oxidoreductase activity of the protein, which remains marginal, but strongly affects the binding of the cluster. It is therefore proposed that the unexpected ability of rAtPDI-A to accommodate an Fe-S cluster is due to its very unique CKHC motif, which is conserved in all higher-plant class A PDIs, differentiating them from all other members of the PDI family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据