4.8 Article

Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 15, 页码 13396-13405

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b02075

关键词

alkenyl carboxylic acid; processing additives; all-polymer solar cells; blend morphology; aggregation

资金

  1. National Key Research Projects [2016YFA0202402]
  2. National Natural Science Foundation of China [61222401, 61674111]

向作者/读者索取更多资源

We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据