4.6 Article

Impact of grain boundary characteristics on lattice thermal conductivity: A kinetic theory study on ZnO

期刊

PHYSICAL REVIEW B
卷 95, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.155313

关键词

-

资金

  1. National Natural Science Foundation of China [51502024]
  2. Distinguished Professorship of Jiangsu Province
  3. Jiangsu Six Talent Summit Plan [2015XCL037]

向作者/读者索取更多资源

Grain boundaries are natural interfaces present in polycrystalline materials and have an important role in transport properties. In this work, the impact of grain boundary crystallographic mismatch, local impurity modulation, and spacing on lattice thermal conductivity is examined from the kinetic theory approach, with ZnO as a case study. We employ a dislocation-based model to describe the grain boundary scatterings of phonons, in which structural characteristics of grain boundaries are explicitly built-in and grain boundary scattering time depends on phonon frequency. This is in contrast to the gray model or the commonly used Casimir limit, which is blind to both grain boundary features and phonon frequency. We show that the lattice thermal conductivity generally decreases with grain boundary misorientation angle, and this dependence is significant for small grain boundary spacing while it tends to diminish for a large one. Intriguingly, our results show that local grain boundary chemistry can affect even more substantially than the crystallographic misfit on phonon relaxation time and interfacial thermal (Kapitza) resistance. Our results suggest new opportunities in tuning lattice thermal conductivity besides the nanostructure engineering approach, and demonstrates the synergetic effects of grain boundary characteristics on phonon conduction in polycrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据