4.7 Article Proceedings Paper

Surface treatment effect on the photocatalytic hydrogen generation of CdS/ZnS core-shell microstructures

期刊

CHINESE JOURNAL OF CATALYSIS
卷 38, 期 3, 页码 489-497

出版社

SCIENCE PRESS
DOI: 10.1016/S1872-2067(17)62769-4

关键词

Core-shell microstructure; Photocatalysis; Surface treatment; Hydrogen production; Low-cost synthesis

资金

  1. National Natural Science Foundation of China [51202186, 51323011]
  2. Fundamental Research Funds for the Central University [xjj2016039]

向作者/读者索取更多资源

CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition. The core-shell structures showed enhanced photocatalytic properties compared with those of CdS or ZnS spherical particles. CdS/ZnS photocatalysts with different amount of ZnS loaded as shells were prepared by adjusting the concentrations of Zn and S precursors during synthesis. The optical properties and photocatalytic activity for hydrogen production were investigated and the amount of ZnS loaded as shell was optimized. Thermal annealing and hydrothermal sulfurization treatments were applied to the core-shell structure and both treatments enhanced the material's photocatalytic activity and stability by eliminating crystalline defects and surface states. The result showed that thermal annealing treatment improved the bulk crystallinity and hydrothermal sulfurization improved the surface properties. The sample subjected to both treatments showed the highest photocatalytic activity. These results indicate that CdS/ZnS core-shell microspheres are a simple structure that can be used as efficient photocatalysts. The hydrothermal sulfurization treatment may also be a useful surface treatment for metal sulfide photocatalysts. The simple two-step method provides a promising approach to the large-scale synthesis of core-shell microsphere catalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据