3.8 Proceedings Paper

Solid-fluid transition in granular flows: MPM simulations with a new constitutive approach

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.proeng.2017.01.028

关键词

dry granular flows; solid-fluid transition; constitutive model; granular temperature; MPM

向作者/读者索取更多资源

Many natural phenomena (rock or snow avalanches, and debris flows) as well as industrial processes are characterized by the flow of solid particles. A key issue in the development of a numerical tool for the study of this problem is the implementation of a suitable constitutive model, capable of capturing the complex rheological behaviour of the granular material in a wide range of strain rates. At the micro-scale level, the grains interacts by enduring frictional contacts or by nearly instantaneous collisions. The first mechanism prevails at low shear rates, when the material behaves like a solid (quasi-static conditions); the latter prevails at high shear rates, when it behaves like a fluid or a granular gas (collisional conditions). This paper presents a new constitutive model able to describe the behaviour of granular materials from quasi-static to collisional conditions and the transition in between. The stress tensor is assumed to be the sum of a quasi-static and a collisional contribution: the former one is modelled by adopting an elasto-plastic model incorporating the critical state concept, whereas the latter stems from the kinetic theory of granular gases. The features of the constitutive model are illustrated with a volume element test; moreover the model has been implemented in the MPM code Anura3D and applied to the simulation of triaxial tests. (C) 2017 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据