4.4 Article

Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores

期刊

AIP ADVANCES
卷 7, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4982729

关键词

-

资金

  1. CNPC-CAS Strategic Cooperation Research Program [2015A-4812]
  2. National Natural Science Foundation of China [11525211, 11472263, 11572307]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040402]

向作者/读者索取更多资源

Understanding the flow characteristics of shale gas especially in nanopores is extremely important for the exploitation. Here, we perform molecular dynamics (MD) simulations to investigate the hydrodynamics of methane in nanometre-sized slit pores. Using equilibrium molecular dynamics (EMD), the static properties including density distribution and self-diffusion coefficient of the confined methane are firstly analyzed. For a 6 nm slit pore, it is found that methane molecules in the adsorbed layer diffuse more slowly than those in the bulk. Using nonequilibrium molecular dynamics (NEMD), the pressure-driven flow behavior of methane in nanopores is investigated. The results show that velocity profiles manifest an obvious dependence on the pore width and they translate from parabolic flow to plug flow when the width is decreased. In relatively large pores (6 - 10 nm), the parabolic flow can be described by the Navier-Stokes (NS) equation with appropriate boundary conditions because of its slip flow characteristic. Based on this equation, corresponding parameters such as viscosity and slip length are determined. Whereas, in small pores (similar to 2 nm), the velocity profile in the center exhibits a uniform tendency (plug flow) and that near the wall displays a linear increase due to the enhanced mechanism of surface diffusion. Furthermore, the profile is analyzed and fitted by a piecewise function. Under this condition, surface diffusion is found to be the root of this anomalous flow characteristic, which can be negligible in large pores. The essential tendency of our simulation results may be significant for revealing flow mechanisms at nanoscale and estimating the production accurately. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据