4.8 Article

Chemical Distribution of Multiple Cation (Rb+, Cs+, MA+, and FA+) Perovskite Materials by Photoelectron Spectroscopy

期刊

CHEMISTRY OF MATERIALS
卷 29, 期 8, 页码 3589-3596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.7b00126

关键词

-

资金

  1. Swedish Research Council
  2. Swedish Energy Agency
  3. Swedish Foundation for Strategic Research
  4. StandUP for Energy
  5. Marie Sklodowska Curie fellowship [665667]

向作者/读者索取更多资源

Lead-based mixed perovskite materials have emerged in the last couple of years as promising photovoltaic materials. Recently, it was shown that improved material stability can be achieved by incorporating small amounts of inorganic cations (Cs+ and Rb+), partially replacing the more common organic cations (e.g., methylammonium, MA, and formamidinium, FA). Especially, a mixed cation composition containing Rb+, Cs+, MA(+), and FA(+) was recently shown to have beneficial optoelectronic properties and was stable at elevated temperature. This work focuses on the composition of this material using synchrotron-based photoelectron spectroscopy. Different probing depths were considered by changing the photon energy of the X-ray source providing insights on the chemical composition and the chemical distribution near the surface of the samples. Perovskite materials containing two, three, or four monovalent cations were analyzed and compared. The presence of Cs and Rb was observed both at the sample surface and toward the bulk, and we found that in the presence of three or four cations, less unreacted PbI2 remains in the sample. Interestingly, Rb and Cs appear to act jointly resulting in a different cation depth profile compared to that of the triple counterparts. Our findings provide significant understanding of the intricate depth-dependent chemical composition in perovskite materials using the common practice of cation mixing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据