4.7 Article

Nonmineralized and Mineralized Collagen Scaffolds Induce Differential Osteogenic Signaling Pathways in Human Mesenchymal Stem Cells

期刊

ADVANCED HEALTHCARE MATERIALS
卷 6, 期 23, 页码 -

出版社

WILEY
DOI: 10.1002/adhm.201700641

关键词

bone regeneration; nanoparticulate mineralized collagen glycosaminoglycan scaffold

资金

  1. US Department of Veterans Affairs [IK2 BX002442-01A2]
  2. Aramont Foundation
  3. Jean Perkins Foundation
  4. National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health [R21 AR063331]
  5. AO Foundation, Switzerland [S-14-54H]
  6. UIUC from National Science Foundation (NSF) [0965918 IGERT]

向作者/读者索取更多资源

The instructive capabilities of extracellular matrix components in progenitor cell differentiation have recently generated significant interest in the development of bioinspired materials for regenerative applications. Previously, a correlation was described between the osteogenic capabilities of nanoparticulate mineralized collagen glycosaminoglycan scaffolds (MC-GAG) and an autogenous activation of small mothers against decapentaplegic (Smad1/5) in the canonical bone morphogenetic protein receptor (BMPR) pathway with a diminished extracellular signal regulated kinase 1/2 (ERK1/2) activation when compared to nonmineralized collagen glycosaminoglycan scaffolds (Col-GAG). This work utilizes a canonical BMPR inhibitor (dorsomorphin homologue 1, DMH1) and an inhibitor of the mitogen activated protein kinase/ERK kinase (MEK)/(ERK) cascade (PD98059) to characterize the necessity of each pathway for osteogenesis. While DMH1 inhibits runt-related transcription factor 2 (Runx2) and bone sialoprotein II (BSPII) gene expression of primary human mesenchymal stem cells (hMSCs) on MC-GAG, PD98059 inhibits BSPII expression on Col-GAG independent of Runx2 expression. DMH1 inhibits mineralization on both Col-GAG and MC-GAG, however, PD98059 only inhibits mineralization on Col-GAG. DMH1 inhibits both Smad1/5 phosphorylation and Runx2 protein expression, whereas PD98059 inhibits ERK1/2 and c-Jun aminoterminal kinase 1/2 (JNK1/2) phosphorylation without affecting Runx2. Thus, activation of the canonical BMPR signaling is necessary for osteogenic differentiation and mineralization of hMSCs on Col-GAG or MC-GAG. The MEK/ERK cascade, intimately tied to JNK activation, is necessary for Runx2-independent osteogenesis on Col-GAG, while completely dispensable in osteogenesis on MC-GAG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据