4.6 Article

Design rules for interfacial thermal conductance: Building better bridges

期刊

PHYSICAL REVIEW B
卷 95, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.195303

关键词

-

资金

  1. NSF-CAREER [QMHP 1028883]
  2. NSF-IDR [CBET 1134311]
  3. National Science Foundation Grant [ACI-1053575]
  4. Air Force Office of Scientific Research [FA9550-14-1-0395]

向作者/读者索取更多资源

We study the thermal conductance across solid-solid interfaces as the composition of an intermediate matching layer is varied. In the absence of phonon-phonon interactions, an added layer can make the interfacial conductance increase or decrease depending on the interplay between (1) an increase in phonon transmission due to better bridging between the contacts and (2) a decrease in the number of available conduction channels that must conserve their momenta transverse to the interface. When phonon-phonon interactions are included, the added layer is seen to aid conductance when the decrease in resistances at the contact-layer boundaries compensate for the additional layer resistance. For the particular systems explored in this work, the maximum conductance happens when the layer mass is close to the geometric mean of the contact masses. The surprising result, usually associated with coherent antireflection coatings, follows from a monotonic increase in the boundary resistance with the interface mass ratio. This geometric mean condition readily extends to a compositionally graded interfacial layer with an exponentially varying mass that generates the thermal equivalent of a broadband impedance matching network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据