4.7 Article

Two (5,5)-connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics

期刊

CRYSTENGCOMM
卷 19, 期 20, 页码 2786-2794

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ce00236j

关键词

-

资金

  1. National Science Foundation of China [21071025, 21471024]
  2. DUT
  3. Fundamental Research Funds for the Central Universities [DUT15ZD118, DUT16ZD205, DUT15LK20]

向作者/读者索取更多资源

Herein we report the first two (5,5)-connected isomeric frameworks, namely, (Me2NH2)[Zn2L(H2O)].3.5DMF (1) and (Me2NH2) [Zn2L(H2O)].6DMF.4H(2)O (2) (DMF = dimethylformamide, H5L = 5,5 '-(6-(4carboxyphenylamino)-1,3,5-triazine-2,4-diyldiimino) diisophthalic acid), obtained via assembly reactions between Zn2+ and a semi-rigid pentacarboxylate ligand (L5-). Single-crystal X-ray diffraction analyses reveal that both compounds are three dimensional metal-organic frameworks (MOFs) built of the same {Zn-2(CO2)(5)} molecular building blocks (MBBs) and L5- ligands but have different topologies (point symbols of (4(4).6(6)) and (4(6).6(4))(4(6).6(4)) for 1 and 2, respectively). The mechanisms of the selective and efficient quenching of their photoluminescence (PL) by a series of nitroaromatic (NACs) solutions could be explained by electron transfer, long range energy transfer and/or electrostatic interactions. Remarkably, 1 and 2 can impressively detect the concentrations of dinoseb in solutions down to 0.09 and 0.11 ppm, respectively. Their PL could also be quenched by nitrobenzene (NB) and 4-nitrotoluene (4-NT) vapors, and the emission from 2 can be more quickly quenched than that from 1 possibly due to 2's larger pores and faster uptake of NAC vapors. 1 and 2 demonstrate significantly better performances than the two previously reported 4-connected MOFs using Zn2+ and a ligand isomeric to L5- in detecting NACs in both suspension and vapour mainly due to the ligands' different LUMOs and arrangements of carboxylate groups (L. Di, J. J. Zhang, S. Q. Liu, J. Ni, H. Zhou and Y. J. Sun, Cryst. Growth Des., 2016, 16, 4539). This work sheds light on not only understanding of the formation of framework isomers but also the development of MOF- based NAC probes with better performances via judicious selection of suitable ligands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据