4.6 Review

Accelerating physical simulations of proteins by leveraging external knowledge

出版社

WILEY
DOI: 10.1002/wcms.1309

关键词

-

资金

  1. NIH [GM107104]
  2. Laufer Center

向作者/读者索取更多资源

It is challenging to compute structure-function relationships of proteins using molecular physics. The problem arises from the exponential scaling of the computational searching and sampling of large conformational spaces. This scaling challenge is not met by today's methods, such as Monte Carlo, simulated annealing, genetic algorithms, or molecular dynamics (MD) or its variants such as replica exchange. Such methods of searching for optimal states on complex probabilistic landscapes are referred to more broadly as Explore-and-Exploit (EE), including in contexts such as computational learning, games, industrial planning, and modeling military strategies. Here, we describe a Bayesian method, called MELD, that 'melds' together EE approaches with externally added information that can be vague, combinatoric, noisy, intuitive, heuristic, or from experimental data. MELD is shown to accelerate physical MD simulations when using experimental data to determine protein structures; for predicting protein structures by using heuristic directives; and when predicting binding affinities of proteins from limited information about the binding site. Such Guided EE approaches might also be useful beyond proteins and beyond molecular science. (C) 2017 John Wiley & Sons, Ltd

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据