4.8 Article

Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model

期刊

CARBON
卷 118, 期 -, 页码 184-191

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.03.024

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. ACEnet
  3. Westgrid
  4. Compute Canada/Calcul Canada

向作者/读者索取更多资源

Graphene is a promising material for a number of technological applications due to its unique electronic properties. It can be mass produced by depositing carbon atoms on metal scaffolds, such as nickel. This work presents a detailed study of graphene adsorption on the nickel (111) surface using the exchange-hole dipole moment (XDM) dispersion correction. XDM is shown to accurately model graphene-nickel interactions, providing adsorption energies in excellent agreement with available experimental data and with RPA calculations. All six graphene-nickel orientations studied present a physisorption energy minimum, but only three exhibit chemisorption. The physisorption and chemisorption minima are close in energy, and are separated by a barrier of similar to 1 kJ/mol per carbon. The relative strength of the chemisorption and physisorption interactions is found to depend heavily on the nickel lattice constant. Thermal expansion stabilizes chemisorption relative to physisorption. The pairwise dispersion coefficients depend strongly on the graphene-nickel distance, and their variation is determined by the exchange-hole dipole moments. If this dependence of the dispersion coefficients with the environment is properly captured, a pairwise dispersion correction (like XDM) is suitable to model surface adsorption. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据