4.7 Article

Ginsenoside Rb1 prevents homocysteine-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-13436-7

关键词

-

资金

  1. National Natural Science Foundation of China [81202815, 81403341]
  2. China Postdoctoral Science Foundation [2012M511787]
  3. Hong Kong Government [RGC/HKBU-121009/14, HMRF 12132091]

向作者/读者索取更多资源

Hyperhomocystinemia (HHcy) is known as an independent risk factor for cardiovascular disease. Our previous study showed that ginsenoside Rb1, the major active constituent of ginseng, prevents homocysteine (Hcy)-induced endothelial damage. However, the role of ginsenoside Rb1 in Hcy-induced dysfunction in endothelial progenitor cells (EPCs) remains unknown. In the study, we found that ginsenoside Rb1 reversed the Hcy-induced impairment of adhesive and migratory ability in EPCs which were significantly abolished by CXCR4 antagonist AMD3100 and VEGFR2 inhibitor SU5416. Ginsenoside Rb1 significantly reversed Hcy-induced SDF-1 reduction in the supernatant and in the serum. Ginsenoside Rb1 reversed downregulation of SDF-1 and VEGFR2 protein expression, inhibition of p38MAPK phosphorylation induced by Hcy. Re-endothelialization in balloon-injured carotid arteries significantly increased with EPCs transplant, and was even better with Rb1 treatment. This effect was significantly abolished by AMD3100. AMD3100 also decreased the number of CM-DiI labeled EPCs in injured arteries. Here we show for the first time that Rb1 prevents Hcy-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation. These findings demonstrate a novel mechanism of the action of Rb1 that may have value in prevention of HHcy associated cardiovascular disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据