4.7 Article

Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-15988-0

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [17305715]
  2. University of Hong Kong (HKU) via the Seed Funding Programme for Basic Research [201210159032]
  3. School of Biological Sciences, HKU
  4. High Level Foreign Experts program - State Administration of Foreign Experts Affairs, the P.R. China [GDT20143200016]
  5. Chinese Academy of Sciences
  6. Canada Research Chair program
  7. School of Biological Sciences of HKU

向作者/读者索取更多资源

Because of wide applications of surface-modified zinc oxide nanoparticles (ZnO-NPs) in commercial sunscreens and their easiness of being released into water, concerns have been raised over their potential effects on aquatic organisms. This study compared physicochemical properties of silane-coated and uncoated ZnO-NPs to elucidate their toxic potencies toward three freshwater and three marine microalgae. Surfaces of ZnO-NPs (20 nm) were modified by coating with 3-aminopropyltrimethoxysilane (A-ZnO-NPs) that provides the particles with a more hydrophilic surface, or dodecyltrichlorosilane (D-ZnO-NPs) that turns the particles to hydrophobic. Uncoated ZnO-NPs formed larger aggregates and released more Zn2+ than did either of the two coated ZnO-NPs. The three nanoparticles formed larger aggregates but released less Zn2+ at pH 8 than at pH 7. Although sensitivities varied among algal species, A-ZnO-NPs and uncoated ZnO-NPs were more potent at inhibiting growth of algal cells than were D-ZnO-NPs after 96-h exposure to ZnO, uncoated ZnO-NPs, each of the coated ZnO-NPs or ZnSO4 at 10 concentrations ranging from 0.1 to 100 mg/L. The marine diatom Thalassiosira pseudonana exposed to ZnO-NPs, A-ZnO-NPs or D-ZnO-NPs resulted in differential expressions of genes, suggesting that each of the coatings resulted in ZnO-NPs acting through different mechanisms of toxic action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据