4.8 Article

ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries

期刊

ACS NANO
卷 11, 期 6, 页码 6474-6482

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b03321

关键词

ZIF; core-double shell; metal sulfide; carbon layer; sodium ion battery

资金

  1. Sate Key Program of National Natural Science of China [51532005]
  2. National Nature Science Foundation of China [51472148, 51272137]
  3. Tai Shan Scholar Foundation of Shandong Province

向作者/读者索取更多资源

Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb2S3@C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn2+ dissociated from ZIF-8 and S2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn2+ and Sb-,(3+) in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb2S3/C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb2S3/C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据