4.7 Article

MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca2+-Dependent Antioxidant Response

期刊

DIABETES
卷 66, 期 6, 页码 1586-1600

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db16-1237

关键词

-

资金

  1. National Natural Science Foundation of China [81400197, 81320108021, 81170183]

向作者/读者索取更多资源

Diabetic cardiomyopathy is a major cause of mortality in patients with diabetes, but specific strategies for preventing or treating diabetic cardiomyopathy have not been clarified yet. MICU1 is a key regulator of mitochondrial Ca2+ uptake, which plays important roles in regulating mitochondrial oxidative phosphorylation and redox balance. To date, however, the significance of MICU1 in diabetic hearts has not been investigated. Here, we demonstrate that MICU1 was downregulated in db/db mouse hearts, which contributes to myocardial apoptosis in diabetes. Importantly, the reconstitution of MICU1 in diabetic hearts significantly inhibited the development of diabetic cardiomyopathy, as evidenced by enhanced cardiac function and reduced cardiac hypertrophy and myocardial fibrosis in db/db mice. Moreover, our in vitro data show that the reconstitution of MICU1 inhibited the apoptosis of cardiomyocytes, induced by high glucose and high fat, through increasing mitochondrial Ca2+ uptake and subsequently activating the antioxidant system. Finally, our results indicate that hyperglycemia and hyperlipidemia induced the downregulation of MICU1 by inhibiting Sp1 expression in diabetic cardiomyocytes. Collectively, our findings provide the first direct evidence that upregulated MICU1 preserves cardiac function in diabetic db/db mice, suggesting that increasing the expression or activity of MICU1 may be a pharmacological approach to ameliorate cardiomyopathy in diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据