4.7 Article

A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form

期刊

CHAOS SOLITONS & FRACTALS
卷 99, 期 -, 页码 209-218

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2017.04.011

关键词

Three-dimensional autonomous chaotic system; Line equilibrium; Hyperbolic equilibrium; Circuit implementation; Chaos synchronization; Fractional-order

向作者/读者索取更多资源

A three-dimensional autonomous chaotic system with an infinite number of equilibrium points located on a line and a hyperbola is proposed in this paper. To analyze the dynamical behaviors of the proposed system, mathematical tools such as Routh-Hurwitz criteria, Lyapunov exponents and bifurcation diagram are exploited. For a suitable choice of the parameters, the proposed system can generate periodic oscillations and chaotic attractors of different shapes such as bistable and monostable chaotic attractors. In addition, an electronic circuit is designed and implemented to verify the feasibility of the proposed system. A good qualitative agreement is shown between the numerical simulations and the Orcard-PSpice results. Moreover, the fractional-order form of the proposed system is studied using analog and numerical simulations. It is found that chaos, periodic oscillations and periodic spiking exist in this proposed system with order less than three. Then an electronic circuit is designed for the commensurate fractional order alpha=0.98, from which we can observe that a chaotic attractor exists in the fractional-order form of the proposed system. Finally, the problem of drive-response generalized projective synchronization of the fractional-order form of the chaotic proposed autonomous system is considered. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据