4.8 Article

High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells

期刊

ACS NANO
卷 11, 期 6, 页码 6057-6064

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b02015

关键词

large-area perovskite solar cells; high-temperature annealing process; planar structure; high performance

资金

  1. Development Program of the Korea Institute of Energy Research (KIER) [B7-2421, B7-5506]

向作者/读者索取更多资源

Organic inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 degrees C for 4 s, the perovskite film with an average domain size of 1 pm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm(2) active area and 18% over a 1 cm(2) active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据