4.7 Article

Blood-brain barrier permeable anticholinesterase aurones: Synthesis, structure-activity relationship, and drug-like properties

期刊

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
卷 94, 期 -, 页码 195-210

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2015.02.055

关键词

Aurones; Acetylcholinesterase inhibitors; Structure-activity relationship; Blood-brain barrier permeability; Metabolic stability; Drug-like properties

资金

  1. Fundamental Research Grant Scheme (FRGS) [203/PFAR-MASI/6711305]
  2. Ministry of Higher Education (MOHE) of Malaysia
  3. Universiti Sains Malaysia
  4. Ministry of Education

向作者/读者索取更多资源

A series of novel aurones bearing amine and carbamate functionalities at various positions (rings A and/or B) of the scaffold was synthesized and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Structure activity relationship study disclosed several potent submicromolar acetylcholinesterase inhibitors (AChEIs) particularly aurones bearing piperidine and pyrrolidine moieties at ring A or ring B. Bulky groups particularly methoxyls, and carbamate to a lesser extent, at either rings were also prominently featured in these AChEI aurones as exemplified by the trimethoxyaurone 4-3. The active aurones exhibited a lower butyrylcholinesterase inhibition. A 3'-chloroaurone 6-3 originally designed to improve the metabolic stability of the scaffold was the most potent of the series. Molecular docking simulations showed these AChEI aurones to adopt favourable binding modes within the active site gorge of the Torpedo californica AChE (TcAChE) including an unusual chlorine it interaction by the chlorine of 6-3 to establish additional bondings to hydrophobic residues of TcAChE. Evaluation of the potent aurones for their blood-brain barrier (BBB) permeability and metabolic stability using PAMPA-BBB assay and in vitro rat liver microsomes (RLM) identified 4-3 as an aurone with an optimal combination of high passive BBB permeability and moderate CYP450 metabolic stability. LC-MS identification of a mono-hydroxylated metabolite found in the RLM incubation of 4-3 provided an impetus for further improvement of the compound. Thus, 4-3, discovered within this present series is a promising, drug-like lead for the development of the aurones as potential multipotent agents for Alzheimer's disease. (C) 2015 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据