4.6 Article

Simultaneously Toughening and Strengthening Soy Protein Isolate-Based Composites via Carboxymethylated Chitosan and Halloysite Nanotube Hybridization

期刊

MATERIALS
卷 10, 期 6, 页码 -

出版社

MDPI AG
DOI: 10.3390/ma10060653

关键词

soy protein isolate; halloysite nanotubes; carboxymethylated chitosan; 1,2,3-propanetriol-diglycidyl-ether; cross-linking interaction

资金

  1. Fundamental Research Funds for the Central Universities [2016ZCQ01]
  2. National Forestry Public Welfare Industry Major Projects of Scientific Research [201504502]

向作者/读者索取更多资源

Chemical cross-linking modification can significantly enhance the tensile strength (TS) of soy protein isolate (SPI)-based composites, but usually at the cost of a reduction in the elongation at break (EB). In this study, eco-friendly and high-potential hybrid SPI-based nanocomposites with improved TS were fabricated without compromising the reduction of EB. The hybrid of carboxymethylated chitosan (CMCS) and halloysite nanotubes (HNTs) as the enhancement center was added to the SPI and 1,2,3-propanetriol-diglycidyl-ether (PTGE) solution. The chemical structure, crystallinity, micromorphology, and opacity properties of the obtained SPI/PTGE/HNTs/CMCS film was analyzed by the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-Vis spectroscopy. The results indicated that HNTs were uniformly dispersed in the SPI matrix without crystal structure damages. Compared to the SPI/PTGE film, the TS and EB of the SPI/PTGE/HNTs/CMCS film were increased by 57.14% and 27.34%, reaching 8.47 MPa and 132.12%, respectively. The synergy of HNTs and CMCS via electrostatic interactions also improved the water resistance of the SPI/PTGE/HNTs/CMCS film. These films may have considerable potential in the field of sustainable and environmentally friendly packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据