4.7 Article

Composite repairs to bridge steels demystified

期刊

COMPOSITE STRUCTURES
卷 169, 期 -, 页码 180-189

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.07.049

关键词

Aging bridges; Composite repairs; Fatigue crack growth; Fractals; ASTM E647-13a

资金

  1. Australian Research Council through an ARC Discovery Grant [DP120101708]

向作者/读者索取更多资源

This paper examines crack growth associated with carbon fibre reinforced plastic (CFRP) repairs to cracked bridge steels and boron epoxy composite and fibre metal patch repairs to cracked aluminium alloy structures. It is first shown that the da/dN versus Delta K curves associated with bridge steels is very similar to that seen in the high strength aerospace steel D6ac. The importance of 1st ply failure, which was first observed on a boron epoxy repair to the F-111 D6ac steel wing pivot fitting, and how to alleviate this failure mechanism is then discussed as is the common design approach whereby after patching the repair is designed to have a Delta K beneath the ASTM long crack threshold Delta Kth. It is shown that crack growth in bridge steels repaired with CFRP patches and in aluminium alloy structures repaired with either boron epoxy or glare patches exhibit a near linear relationship between the log of the crack length and the number of cycles. We then show that crack growth in these repairs can be represented by the same simple master curve relationship that has been found to hold for cracks growing in both operational aircraft and full scale fatigue tests. These findings are important since they suggest that the methodology used by the Royal Australian Air Force to certify structural modifications to operational aircraft may also be applicable to composite repairs/modifications to steel bridges, which are generally experience significantly lower stresses.(C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据