4.7 Article

Structure-activity relationship study using peptide arrays to optimize Api137 for an increased antimicrobial activity against Pseudomonas aeruginosa

期刊

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
卷 103, 期 -, 页码 574-582

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2015.09.022

关键词

Apidaecin; Gram-negative bacterium; Praline-rich antimicrobial peptide (PrAMP); Pseudomonas aeruginosa; SPOT synthesis

向作者/读者索取更多资源

The opportunistic Gram-negative bacterium Pseudomonas aeruginosa has a low susceptibility to common antibiotics. Additionally, around 15% of all clinical isolates bear acquired resistance genes. Thus, the development of new antibiotics to combat this pathogen in pneumonia, urinary tract infections, and bacteremia, represents an urgent task. The activity spectrum of the proline-rich antimicrobial peptide apidaecin lb, originally isolated from honeybees (Apis mellifera), was extended in previous studies to further human pathogens including P. aeruginosa. However, the in vitro activity of the optimized peptide Api137 is limited to diluted medium conditions. Thus, we synthesized 323 analogs of Api137 on cellulose membranes using the SPOT strategy by substituting each residue individually by 19 other amino acids or deleting the residue. The peptides were deprotected with trifluoroacetic acid and cleaved with aqueous trimethylamine as C-terminal acids providing around 30 lig crude peptide per spot. This amount allowed determining the minimal inhibitory concentrations in a microdilution broth assay. The most promising substitutions were selected to synthesize 44 doubly and triply substituted Api137 analogs on the membrane. The 19 best peptides were synthesized at a larger scale and purified. Eight triply substituted Api137 analogs were up to 16-fold more active against P. aeruginosa at high medium concentrations without losing activities against Klebsiella pneumoniae and Acinetobacter baumannii and only slightly against Escherichia coli. The eight most active Api137 analogs were non-hemolytic to human erythrocytes and non-toxic to HeLa cells. (C) 2015 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据